An Autonomous Body under the Ministry of Health and Family Welfare, Govt. of India

Faculty and Staff

Dr. Nabanita Chatterjee Senior Scientific Officer-II

Department: Cancer Research

Education

Education

Ph.D. 2015, CSIR-Indian Institute of Chemical Biology, Kolkata.

M.Pharm (Parmacology) 2011, West Bengal University of Technology, Kolkata.

                                   

Experience

Chittaranjan National Cancer Institute, Kolkata: Cancer Immuno-metabolism

The Ohio State University, Columbus, Ohio, USA: Translational research

Cancer Care Canada, Winnipeg, Canada: Leukemia research & Metabolism

Our lab is focused on studying the intricate relationship between cancer and immunometabolism. The primary objective is to understand how metabolic reprogramming in immune cells and tumor cells can rewire cancer metastasis. We also emphasize delving into a deeper understanding of how altered cellular metabolism or metabolic shifts in immune cells, like the components either from innate or adaptive compartment; influence tumor microenvironment, thereby facilitating the proliferation and survival of tumor cells. We are inclined to identify novel therapeutic targets that can disintegrate the metastatic cascade and enrich anti-tumor immune responses by inspecting the metabolic factors responsible for driving and regulating cancer metastasis with translational approaches for better clinical and societal welfare.


1.     Shukla D, Mishra S, Mandal T, Charan M, Verma AK, Khan MMA, Chatterjee N, Dixit AK, Ganesan SK, Ganju RK, Srivastava AK. MicroRNA-379-5p attenuates cancer stem cells and reduces cisplatin resistance in ovarian cancer by regulating RAD18/Polη axis. Cell Death Dis. 2025 Feb 27;16(1):140.

2.     Das A, Roy S, Bairagi A, Alam N, Chatterjee N*. IL-6 mediated CD206+ARG-1+ tumor associated macrophage polarization induces Treg infiltration in non-responder luminal A breast cancer. FEBS Lett. 2025 Feb 4. doi: 10.1002/1873-3468.70000.

3.     Das P, Roy S, Das C, Biswas R, Chaterjee N, Dinda J. Structure-based design to explore the anticancer efficacy of organometallic Pt(ii)- and Au(iii)-N-heterocyclic carbene (NHC) complexes. New J. Chem., 2024, 48, 16189. DOI: 10.1039/D4NJ02853H.

4.     Hassan A, Roy S, Das A, Wahed SA, Bairagi A, Mondal S, Chatterjee N*, Das N. Covalent Organic Frameworks as Potential Drug Carriers and Chemotherapeutic Agents for Ovarian Cancers. ACS Biomater Sci Eng. 2024 Jul 8;10(7):4227-4236. doi: 10.1021/acsbiomaterials.4c00351.

5.     Roy S, Das A, Bairagi A, Das D, Jha A, Srivastava AK, Chatterjee N*. Mitochondria act as a key regulatory factor in cancer progression: Current concepts on mutations, mitochondrial dynamics, and therapeutic approach. Mutat Res Rev Mutat Res. 2024 Mar 8;793:108490. doi: 10.1016/j.mrrev.2024.108490

6.    Therapeutic Potential of Ag(I)-, Au(I)-, Au(III)-NHC complexes of 3-pyridyl wingtip N-heterocyclic carbene (NHC) against lung cancer. P Behera, L Maity, S Roy, A Das, P Sahu, H Kisan, A Changotra, A Isab, M Fettouhi, A Bairagi, N Chatterjee*, J Dinda*. New Journal of Chemistry. 2023. New Journal of Chemistry.

7.     Behera PK, Maity L, Roy S, Das A, Sahu P, Kisan HK, Changotra A, Isab AA, Fetthouhi MB, Bairagi A, Chatterjee N, Dinda J. Therapeutic Potential of Ag(I)-, Au(I)-, Au(III)-NHC complexes of 3-pyridyl wingtip N-heterocyclic carbene (NHC) against lung cancer. New Journal of Chemistry. 2023;47(40).

8.    Understanding the Correlation between Metabolic Regulator SIRT1 and Exosomes with CA-125 in Ovarian Cancer: A Clinicopathological Study. S Roy, A Das, M Vernekar, S Mandal, N Chatterjee*. BioMed Research International. 2022.16.

9.    A conjugated 2D covalent organic framework as a drug delivery vehicle towards triple negative breast cancer malignancy. S K Das, S Roy, A Das, A Chowdhury, N Chatterjee*, A Bhaumik*. RSC Nanoscale Advances. 2022. 4. 2313-2320.

10. KLF8 is activated by TGF-β1 via Smad2 and contributes to ovarian cancer progression. A Cherukunnath, R S. Davargaon, R Ashraf, U Kamdar, A K. Srivastava, P P. Tripathi, N Chatterjee, S Kumar. Journal of Cellular Biochemistry. 2022. May;123(5):921-934

11. Leishmania donovani infection induce Extracellular signal-regulated kinase ½ (ERK½) mediated lipid droplet generation in macrophages. S Banerjee, D Bose, S Das, N Chatterjee, S Mishra, K Das Saha. Molecular Immunology.2022. Jan;141.328-337. 

12. Impact of anesthetics on oncogenic signaling network: a review on propofol and isoflurane. P Saha, A Das, N Chatterjee, D Chakrabarti, D Sinha. Fundamental Clinical Pharmacology. 2021. Feb;36(1). 49-71.

13. Understanding the immunological aspects of SARS-CoV-2 causing COVID-19 pandemic: A therapeutic approach. A Das, S Roy, S Swarnakar, N Chatterjee*. Clinical Immunology. 2021.Oct;231.108804.

14. Trends in Research on Exosomes in Cancer Progression and Anticancer Therapy. D Sinha, S Roy, P Saha, N Chatterjee, A Bishayee. Cancers (Basel). 2021. Jan 17;13(2). 326-332.

15. Study the synergistic role of trastuzumab along with docetaxel in immune profiling of HER2+ breast cancer patients. A Das, S Roy, DP Nanda, S Das, N Chatterejee. FASEB. 2021. June.10.1096/FASEBJ.2021.35.02844.

16. MicroRNAs: As Critical Regulators of Tumor- Associated Macrophages. B Chatterjee, P Saha, S Bose, D Shukla, N Chatterjee, S Kumar, PP Tripathi, AK Srivastava. International Journal of Molecular Science. 2020. Sep 27; 21(19). 7117-7129

17. Macrophage migration inhibitory factor inhibition as a novel therapeutic approach against triple-negative breast cancer. M Charan, S Das, S Mishra, N Chatterjee, S Varikuti, K Kaul, S Misri, DK Ahirwar, AR Satoskar, RK Ganju. Cell Death Disease. 2020. Sep 17;11(9). 774-798.

18. Cannabinoid receptor 2 agonist JWH-015 inhibits growth and metastasis of triple negative breast cancers through regulation of autophagy mechanism. N Chatterjee; S Das; D K. Ahirwar; S Mishra; RK Ganju. Cancer Res (2019) 79: 2018. https://doi.org/10.1158/1538-7445.AM2019-2018.

19. Inhibition of TGF-β induced lipid droplets switches M2 macrophages to M1 phenotype. D Bose, S Banerjee, N Chatterjee, S Das, M Saha, KD Saha. Toxicology In Vitro. 2019. Aug;58 . 207-214.

20. Bromelain with peroxidase from pineapple are more potent to target leukemia growth inhibition - A comparison with only bromelain. R Debnath, N Chatterjee*, S Das, S Mishra, D Bose, S Banerjee, S Das, KD Saha, D Ghosh, D Maiti. Toxicol In Vitro. 2018 Nov 17; 55:24-32. doi: 10.1016/j.tiv.2018.11.004.

21. Possible involvement of iNOS and TNF-a in nutritional intervention against nicotine-induced pancreatic islet cell damage. A Bhattacharjee, S Kumari Prasada, S Pal, B Maji, A Banerjee, D Das, A Bose, N Chatterjee, S Mukherjee. Biomedicine & Pharmacotherapy. Biomed Pharmacother. 2016 Dec;84:1727-1738.

22. para-Phenylenediamine (p-PD) induces apoptotic death of melanoma cells and reduces melanoma tumour growth in mice. D Bhowmick, K Bhar, S K Mallick, S Das, N Chatterjee, T S. Sarkar, R Chakrabarti, K D Saha and A Siddhanta. Biochem Res Int. 2016;2016:3137010. doi: 10.1155/2016/3137010. Epub 2016 May 17.

23. Attenuated Leishmania induce pro-inflammatory mediators and influence leishmanicidal activity by p38 MAPK dependent phagosome maturation in Leishmania donovani co-infected macrophages. S Banerjee,  D Bose, S Das, N Chatterjee, S Chakraborty, T Das, K Das Saha. Nature Scientific reports, 2016 Mar 1;6:22335. doi: 10.1038/srep22335.

24. Heat Killed Attenuated Leishmania Induces Apoptosis of HepG2 Cells Through ROS Mediated p53 Dependent Mitochondrial Pathway. Bose D, Banerjee S, Das S, Chatterjee N, Saha KD. Cell Physiol Biochem. 2016;38(4):1303-18.

25. Self-assembled ZnS nanospheres with nanoscale porosity as an efficient carrier for the delivery of doxorubicin. V Kumari, N Chatterjee, S Das, S Bhunia, K Das Saha, A Bhaumik. RSC Advances, 2015, DOI: 10.1039/C5RA17998J.

26. Antineoplastic impact of leishmanial sphingolipid in tumour growth with regulation of angiogenic event and inflammatory response. S Das, N Chatterjee, D Bose, S Banerjee, T Jha, K Das Saha. Apoptosis, 2015, 20(6):869-882.

27. Lipid from infective L. donovani regulates acute myeloid cell growth via mitochondria dependent MAPK pathway. N Chatterjee*, S Das, D Bose, S Banerjee, T Jha, K Das Saha. Plos one, 2015, DOI: 10.1371/journal.pone.0120509.

28. Novel porous polyurea network showing aggregation induced white light emission, applications as biosensor and scaffold for drug delivery. S Bhunia, N Chatterjee, S Das, K Das Saha, A Bhaumik. ACS Applied Materials & Interfaces, 2014,6(24):22569-76.

29. Leishmanial lipid affords protection against oxidative stress induced hepatic injury by regulating inflammatory mediators and confining apoptosis progress. N Chatterjee*, S Das, D Bose, S Banerjee, T Jha, K Das Saha. Toxicology Letters, 2015, 232(2):499-512.

30. Leishmanial sphingolipid induces apoptosis in Sarcoma 180 cancer cells through regulation of tumour growth via angiogenic switchover. S Das, N Chatterjee, D Bose, S Banerjee, T Jha, K Das Saha. Tumour Biology, 2014, DOI: 10.1007/s13277-014-2947-0.

31. Lipid isolated from a Leishmania donovani strain reduces Escherichia coli induced sepsis in mice through inhibition of inflammatory responses. Das S, Chatterjee N, Bose D, Banerjee S, Pal P, Jha T, Das Saha K. Mediator of Inflammation. 2014; 409694

32. Magnetic core–shell nanoprobe for sensitive killing of cancer cells via induction with a strong external magnetic field. Samir Mandal, N Chatterjee, S Das, K Das Saha, K Chaudhuri. RSC Advances. 2014, 4, 20077-20085.

33. Leishmanial lipid suppresses bacterial endotoxin induced inflammatory response with attenuation of tissue injury in sepsis. N Chatterjee*, S Das, D Bose, S Banerjee, T Jha, K Das Saha. Journal of Leukocyte Biology. 2014, 96(2):325-336.

34. Synthesis, characterisation and biological evaluation of 99mTc(CO)3 labeled peptides for potential use as tumor targeted radiopharmaceuticals. R Baishya, D Kumar Nayak, N Chatterjee, K Krishna, D Halder, S Karmakar, M Chatterjee Debnath. Chemical Biology & Drug Design. 2014:83(1):58-70.

35. Anthracene-bisphosphonate based novel fluorescent organic nanoparticles explored as apoptosis inducers of cancer cells. M Pramanik, N Chatterjee*, S Das, K Das Saha, A Bhaumik. Chemical Comunication 2013; 49(82):9461-3.

36. Effect of corchorusin-D, a saikosaponin like compound, on B16F10 melanoma cells (in vitro and in vivo). S Mallick, B C. Pal, D Kumar, N Chatterjee, S Das, K Das Saha. Asian Journal of Natural product Research 2013(11):1197-203.

37. Cytotoxic Activity of Di-spiro Oxindole Andrographolide Derivatives in Cancer Cells: Mechanistic Study of Cell Death by a Potent Candidate. S Kumar Dey, D Bose, A Hazra, S Naskar, R Narayan Munda, S Das, N Chatterjee, N B Mondal, S Banerjee, K Das Saha. Plos one 2013; 8(3).

38. Exploring anti-inflammatory activity of a novel 2-phenylquinazoline analog with protection against inflammatory injury. N Chatterjee*, S Das, D Bose, S Banerjee, S Das, D Chattopadhyay, K Das Saha. Toxicology and applied pharmacology. 2012 Oct 15; 264(2):182-91.

39. Anticancer potential of 3-(Arylideneamino)-2-phenylquinazoline-4(3H)-ones derivatives. S Das, N Chatterjee*, D Bose, S Kr Dey, R N Munda, A Nandy, S Bera, S Kr Biswas. K Das Saha. Cellular Physiology and Biochemistry 2012; 29 (1-2):251-260.

 

Book Chapter:

·           Role of mitochondrial-mediated pathways in Breast Cancer: An Overview. N Chatterjee, D Das, A Jha, S Roy; Current Advances in Breast Cancer Research: A Molecular Approach. 2020. 978-981-14-5144-7.