
Dr. Nabanita Chatterjee Senior Scientific Officer-II
Department: Cancer Research
Education
Education
Ph.D. 2015, CSIR-Indian Institute of
Chemical Biology, Kolkata.
M.Pharm (Parmacology) 2011, West
Bengal University of Technology, Kolkata.
Experience
Chittaranjan National Cancer
Institute, Kolkata: Cancer Immuno-metabolism
The Ohio State University, Columbus,
Ohio, USA: Translational research
Cancer Care Canada, Winnipeg, Canada:
Leukemia research & Metabolism
Research Interest
Our lab is focused on studying the
intricate relationship between cancer and immunometabolism. The primary
objective is to understand how metabolic reprogramming in immune cells and
tumor cells can rewire cancer metastasis. We also emphasize delving into a
deeper understanding of how altered cellular metabolism or metabolic shifts in
immune cells, like the components either from innate or adaptive compartment;
influence tumor microenvironment, thereby facilitating the proliferation and
survival of tumor cells. We are inclined to identify novel therapeutic targets
that can disintegrate the metastatic cascade and enrich anti-tumor immune
responses by inspecting the metabolic factors responsible for driving and
regulating cancer metastasis with translational approaches for better clinical
and societal welfare.
Publications
1.
Shukla D, Mishra S, Mandal T, Charan M, Verma AK, Khan MMA, Chatterjee
N, Dixit AK, Ganesan SK, Ganju RK, Srivastava AK. MicroRNA-379-5p attenuates
cancer stem cells and reduces cisplatin resistance in ovarian cancer by
regulating RAD18/Polη axis. Cell Death Dis. 2025 Feb 27;16(1):140.
2.
Das A, Roy S, Bairagi A, Alam N, Chatterjee N*. IL-6 mediated
CD206+ARG-1+ tumor associated macrophage polarization induces Treg infiltration
in non-responder luminal A breast cancer. FEBS Lett. 2025 Feb 4. doi:
10.1002/1873-3468.70000.
3.
Das P, Roy S, Das C, Biswas R, Chaterjee N, Dinda J.
Structure-based design to explore the anticancer efficacy of organometallic
Pt(ii)- and Au(iii)-N-heterocyclic carbene (NHC) complexes. New J. Chem., 2024,
48, 16189. DOI: 10.1039/D4NJ02853H.
4.
Hassan A, Roy S, Das A, Wahed SA, Bairagi A, Mondal S, Chatterjee N*,
Das N. Covalent Organic Frameworks as Potential Drug Carriers and
Chemotherapeutic Agents for Ovarian Cancers. ACS Biomater Sci Eng. 2024 Jul
8;10(7):4227-4236. doi: 10.1021/acsbiomaterials.4c00351.
5.
Roy S, Das A, Bairagi A, Das D, Jha A, Srivastava AK, Chatterjee N*.
Mitochondria act as a key regulatory factor in cancer progression: Current
concepts on mutations, mitochondrial dynamics, and therapeutic approach. Mutat
Res Rev Mutat Res. 2024 Mar 8;793:108490. doi: 10.1016/j.mrrev.2024.108490
6.
Therapeutic Potential of Ag(I)-, Au(I)-, Au(III)-NHC complexes of
3-pyridyl wingtip N-heterocyclic carbene (NHC) against lung cancer. P Behera, L
Maity, S Roy, A Das, P Sahu, H Kisan, A Changotra, A Isab, M Fettouhi, A
Bairagi, N Chatterjee*, J Dinda*. New Journal of Chemistry. 2023. New
Journal of Chemistry.
7.
Behera PK, Maity L, Roy S, Das A, Sahu P, Kisan HK, Changotra A, Isab
AA, Fetthouhi MB, Bairagi A, Chatterjee N, Dinda J. Therapeutic
Potential of Ag(I)-, Au(I)-, Au(III)-NHC complexes of 3-pyridyl wingtip
N-heterocyclic carbene (NHC) against lung cancer. New Journal of Chemistry.
2023;47(40).
8.
Understanding the Correlation between Metabolic Regulator SIRT1 and
Exosomes with CA-125 in Ovarian Cancer: A Clinicopathological Study. S Roy, A
Das, M Vernekar, S Mandal, N Chatterjee*. BioMed Research International.
2022.16.
9.
A conjugated 2D covalent organic framework as a drug delivery vehicle
towards triple negative breast cancer malignancy. S K Das, S Roy, A Das, A
Chowdhury, N Chatterjee*, A Bhaumik*. RSC Nanoscale Advances. 2022. 4.
2313-2320.
10.
KLF8 is activated by TGF-β1 via Smad2 and contributes to ovarian cancer
progression. A Cherukunnath, R S. Davargaon, R Ashraf, U Kamdar, A K.
Srivastava, P P. Tripathi, N Chatterjee, S Kumar. Journal of Cellular
Biochemistry. 2022. May;123(5):921-934
11.
Leishmania donovani infection induce
Extracellular signal-regulated kinase ½ (ERK½) mediated lipid droplet
generation in macrophages. S Banerjee, D Bose, S Das, N Chatterjee, S
Mishra, K Das Saha. Molecular Immunology.2022. Jan;141.328-337.
12.
Impact of anesthetics on oncogenic signaling network: a review on
propofol and isoflurane. P Saha, A Das, N Chatterjee, D Chakrabarti, D
Sinha. Fundamental Clinical Pharmacology. 2021. Feb;36(1). 49-71.
13.
Understanding the immunological aspects of SARS-CoV-2 causing COVID-19
pandemic: A therapeutic approach. A Das, S Roy, S Swarnakar, N Chatterjee*.
Clinical Immunology. 2021.Oct;231.108804.
14.
Trends in Research on Exosomes in Cancer Progression and Anticancer
Therapy. D Sinha, S Roy, P Saha, N Chatterjee, A Bishayee. Cancers
(Basel). 2021. Jan 17;13(2). 326-332.
15.
Study the synergistic role of trastuzumab along with docetaxel in
immune profiling of HER2+ breast cancer patients. A Das, S Roy, DP Nanda, S
Das, N Chatterejee. FASEB. 2021. June.10.1096/FASEBJ.2021.35.02844.
16.
MicroRNAs: As Critical Regulators of Tumor- Associated Macrophages. B
Chatterjee, P Saha, S Bose, D Shukla, N Chatterjee, S Kumar, PP
Tripathi, AK Srivastava. International Journal of Molecular Science. 2020. Sep
27; 21(19). 7117-7129
17.
Macrophage migration inhibitory factor inhibition as a novel
therapeutic approach against triple-negative breast cancer. M Charan, S Das, S
Mishra, N Chatterjee, S
Varikuti, K Kaul, S Misri, DK Ahirwar, AR Satoskar, RK Ganju. Cell Death
Disease. 2020. Sep 17;11(9). 774-798.
18.
Cannabinoid receptor 2 agonist JWH-015 inhibits growth and metastasis
of triple negative breast cancers through regulation of autophagy mechanism. N
Chatterjee; S Das; D K. Ahirwar; S Mishra; RK Ganju. Cancer Res (2019) 79:
2018. https://doi.org/10.1158/1538-7445.AM2019-2018.
19.
Inhibition of TGF-β induced lipid droplets switches M2 macrophages to
M1 phenotype. D Bose, S Banerjee, N Chatterjee, S Das, M Saha, KD Saha.
Toxicology In Vitro. 2019. Aug;58 .
207-214.
20. Bromelain
with peroxidase from pineapple are more potent to target leukemia growth
inhibition - A comparison with only bromelain. R Debnath, N Chatterjee*,
S Das, S Mishra, D Bose, S Banerjee, S Das, KD Saha, D Ghosh, D Maiti. Toxicol In Vitro. 2018 Nov 17; 55:24-32.
doi: 10.1016/j.tiv.2018.11.004.
21. Possible
involvement of iNOS and TNF-a in nutritional intervention against
nicotine-induced pancreatic islet cell damage. A Bhattacharjee, S Kumari
Prasada, S Pal, B Maji, A Banerjee, D Das, A Bose, N Chatterjee, S
Mukherjee. Biomedicine &
Pharmacotherapy. Biomed Pharmacother. 2016 Dec;84:1727-1738.
22. para-Phenylenediamine
(p-PD) induces apoptotic death of melanoma cells and reduces melanoma tumour
growth in mice. D Bhowmick, K Bhar, S K Mallick, S Das, N Chatterjee, T
S. Sarkar, R Chakrabarti, K D Saha and A Siddhanta. Biochem Res Int. 2016;2016:3137010. doi: 10.1155/2016/3137010. Epub
2016 May 17.
23. Attenuated
Leishmania induce pro-inflammatory mediators and influence leishmanicidal
activity by p38 MAPK dependent phagosome maturation in Leishmania donovani
co-infected macrophages. S Banerjee, D
Bose, S Das, N Chatterjee, S Chakraborty, T Das, K Das Saha. Nature Scientific reports, 2016 Mar
1;6:22335. doi: 10.1038/srep22335.
24. Heat
Killed Attenuated Leishmania Induces Apoptosis of HepG2 Cells Through ROS
Mediated p53 Dependent Mitochondrial Pathway. Bose D, Banerjee S, Das S,
Chatterjee N, Saha KD. Cell Physiol Biochem. 2016;38(4):1303-18.
25. Self-assembled
ZnS nanospheres with nanoscale porosity as an efficient carrier for the
delivery of doxorubicin. V Kumari, N Chatterjee, S Das, S Bhunia, K Das
Saha, A Bhaumik. RSC Advances, 2015,
DOI: 10.1039/C5RA17998J.
26. Antineoplastic
impact of leishmanial sphingolipid in tumour growth with regulation of
angiogenic event and inflammatory response. S Das, N Chatterjee, D Bose,
S Banerjee, T Jha, K Das Saha. Apoptosis,
2015, 20(6):869-882.
27. Lipid
from infective L. donovani regulates acute myeloid cell growth via mitochondria
dependent MAPK pathway. N Chatterjee*, S Das, D Bose, S Banerjee, T Jha, K Das Saha. Plos one, 2015, DOI:
10.1371/journal.pone.0120509.
28.
Novel porous polyurea network showing aggregation induced white light
emission, applications as biosensor and scaffold for drug delivery. S Bhunia, N
Chatterjee, S Das, K Das
Saha, A Bhaumik. ACS Applied
Materials & Interfaces, 2014,6(24):22569-76.
29.
Leishmanial lipid affords protection against oxidative stress induced
hepatic injury by regulating inflammatory mediators and confining apoptosis progress.
N Chatterjee*, S Das, D
Bose, S Banerjee, T Jha, K Das Saha. Toxicology
Letters, 2015, 232(2):499-512.
30. Leishmanial
sphingolipid induces apoptosis in Sarcoma 180 cancer cells through regulation
of tumour growth via angiogenic switchover. S Das, N Chatterjee, D Bose,
S Banerjee, T Jha, K Das Saha. Tumour
Biology, 2014, DOI: 10.1007/s13277-014-2947-0.
31. Lipid
isolated from a Leishmania donovani
strain reduces Escherichia coli induced sepsis in mice through inhibition of
inflammatory responses. Das S, Chatterjee N, Bose D, Banerjee S, Pal P,
Jha T, Das Saha K. Mediator of
Inflammation. 2014; 409694
32. Magnetic
core–shell nanoprobe for sensitive killing of cancer cells via induction with a
strong external magnetic field. Samir Mandal, N Chatterjee, S Das, K Das
Saha, K Chaudhuri. RSC Advances.
2014, 4, 20077-20085.
33. Leishmanial
lipid suppresses bacterial endotoxin induced inflammatory response with
attenuation of tissue injury in sepsis. N Chatterjee*, S Das, D Bose, S
Banerjee, T Jha, K Das Saha. Journal of Leukocyte
Biology. 2014, 96(2):325-336.
34.
Synthesis, characterisation and biological
evaluation of 99mTc(CO)3 labeled peptides for potential use as tumor targeted
radiopharmaceuticals. R Baishya, D Kumar Nayak, N Chatterjee, K
Krishna, D Halder, S Karmakar, M Chatterjee Debnath. Chemical Biology & Drug Design. 2014:83(1):58-70.
35.
Anthracene-bisphosphonate
based novel fluorescent organic nanoparticles explored as apoptosis inducers of
cancer cells. M Pramanik, N Chatterjee*, S Das, K Das Saha, A Bhaumik. Chemical Comunication 2013;
49(82):9461-3.
36.
Effect of corchorusin-D, a
saikosaponin like compound, on B16F10 melanoma cells (in vitro and in vivo). S
Mallick, B C. Pal, D Kumar, N Chatterjee, S Das, K Das Saha. Asian Journal of Natural product
Research 2013(11):1197-203.
37. Cytotoxic
Activity of Di-spiro Oxindole Andrographolide Derivatives in Cancer Cells:
Mechanistic Study of Cell Death by a Potent Candidate. S Kumar Dey, D Bose, A
Hazra, S Naskar, R Narayan Munda, S Das, N Chatterjee, N B Mondal, S
Banerjee, K Das Saha. Plos one 2013; 8(3).
38. Exploring
anti-inflammatory activity of a novel 2-phenylquinazoline analog with
protection against inflammatory injury. N Chatterjee*, S Das, D Bose, S
Banerjee, S Das, D Chattopadhyay, K Das Saha. Toxicology and applied
pharmacology. 2012 Oct 15; 264(2):182-91.
39. Anticancer potential of
3-(Arylideneamino)-2-phenylquinazoline-4(3H)-ones derivatives. S Das, N
Chatterjee*, D Bose, S Kr Dey, R N Munda, A Nandy, S Bera, S Kr Biswas. K
Das Saha. Cellular Physiology and
Biochemistry 2012; 29 (1-2):251-260.
Book Chapter:
·
Role of mitochondrial-mediated
pathways in Breast Cancer: An Overview. N Chatterjee, D Das, A Jha, S
Roy; Current Advances in Breast Cancer Research: A Molecular Approach. 2020.
978-981-14-5144-7.